Learning Objectives

- Recognize the systems approach as the basic framework for solving problems of all kinds.
- Know how to apply the systems approach in solving systems problems.
- Understand that the systems development life cycle (SDLC) is a methodology—a recommended way to develop systems.
- Be familiar with the main SDLC approaches—the traditional waterfall cycle, prototyping, rapid application development, phased development, and business process redesign.
- Know the basics of modeling processes with data flow diagrams and use cases.
- Understand how systems development projects are managed in a top-down fashion.
Introduction

• Both managers and systems developers can apply the systems approach when solving problems
• The approach consists of three phases of effort:
 – **Preparation** consists of viewing the firm as a system, recognizing the environmental system, and identifying the firm’s subsystems
 – **Definition** involves proceeding from a system to a subsystem level and analyzing system parts in a certain sequence
 – **Solution** involves identifying the alternative solutions, evaluating them, and selecting the best one

THE SYSTEMS APPROACH

• John Dewey identified three series of judgments involved in adequately resolving a controversy
 1. Recognize the controversy
 2. Weigh alternative claims
 3. Form a judgment
• During the late 1960s/early 1970s, interest in systematic problem solving strengthened
• Management scientists and information specialists produced a recommended framework that became known as the **systems approach**—a series of problem-solving steps that ensure the problem is first understood, alternative solutions are considered, and the selected solution works (Figure 7.1)
The System’s Approach (cont.)

1. If a manager can also regard the levels of management as subsystems, the importance of information flows becomes clear.

2. A problem trigger – a signal that things are going better/worse than planned – usually stimulates a definition effort.

3. A top-down analysis then begins of the system for which the manager is responsible.

4. As the manager studies each system level, the system elements are analyzed in sequence (Figure 7.3).
Figure 7.2 Each Business Area Is a System

![Diagram showing a hierarchy of business areas starting with a President node dividing into Marketing, Manufacturing, and Finance subsystems, further divided into Human Resources and Information Services subsystems.](http://www.deden08m.wordpress.com)

Figure 7.3 Each Part of the System Is Analyzed in Sequence

1. Standards
2. Outputs
3. Management
4. Information processor
5. Inputs and input resources
6. Transformation processes
7. Output resources

![Diagram showing a sequence analysis of system components.](http://www.deden08m.wordpress.com)
Steps towards a Solution

1. Identify Alternative Solutions
2. Evaluate the Alternative Solutions
3. Selecting the Best Solution Involves:
 • Analysis
 • Judgment
 • Bargaining
4. Implement the Solution
5. Follow Up to Ensure That the Solution Is Effective

THE SYSTEMS DEVELOPMENT LIFE CYCLE

• The system life development cycle (SDLC) is an application of the systems approach methodology to the development of an information system
THE TRADITIONAL SDLC

• It didn’t take the first system developers long to recognize a sequence if the project was to have the best chance of success:
 • Planning
 • Analysis
 • Design
 • Implementation
 • Use

• Figure 7.4 illustrates how the life cycle phases can fit into a circular pattern over time

Figure 7.4 The Circular Pattern of the System Life Cycle
PROTOTYPING

- A **prototype** is a version of a potential system that provides the developers and potential users with an idea of how the system will function when completed.
- In prototyping, a prototype is produced as quickly as possible, perhaps overnight, to obtain user feedback that will enable the prototype to be improved.
- Figure 7.5 shows the four steps involved in developing an evolutionary prototype.
- Figure 7.6 shows the steps involved in developing a requirements prototype.
- As prototyping has proven to be one of the most successful methodologies, it would be difficult to find a development project that didn’t use it to some degree.

Figure 7.5 Development of an Evolutionary Prototype

1. Identify user needs
2. Develop a prototype
3. Prototype acceptable? (Y/N)
4. Use the prototype
RAPID APPLICATION DEVELOPMENT

- **Rapid Application Development (RAD)**, is a term coined by James Martin. It refers to a development life cycle intended to produce systems quickly without sacrificing quality.

- **Information engineering** is the name that Martin gave to his overall approach to system development, which treats it as a firm-wide activity, while the term **enterprise** is used to describe the entire firm.

- Figure 7.7 illustrates the top-down nature of information engineering, involving both data (the left face of the pyramid) and activities (the right face).
RAD (cont.)

- RAD requires four essential ingredients:
 - Management
 - People
 - Methodologies
 - Tools
- Of all the components of information engineering, RAD has probably enjoyed the greatest support
PHASED DEVELOPMENT

- This is an approach for developing information systems that consists of six stages:
 1. Preliminary investigation
 2. Analysis
 3. Design
 4. Preliminary construction
 5. Final construction
 6. System test and installation

- The analysis, design, and preliminary construction stages are taken for each system module

- The six phased development stages are illustrated in Figure 7.8

- Figure 7.9 illustrates how the module phases are integrated into the system development

Figure 7.8 The Stages of the Phased Development Methodology
BUSINESS PROCESS REDESIGN

- The process of reworking the systems has been called **reengineering** or **business process redesign (BPR)**

- BPR affects the firm’s IT operation in two ways:
 1. IT can apply BPR to the redesign of **legacy systems** that can no longer be kept alive by ordinary maintenance
 2. When a firm applies BPR to its major operations, the effort invariably has a ripple effect that results in the redesign of information systems

- IT has devised **reverse engineering**, **restructuring**, and **reengineering** that can be applied separately or in combination for applying BPR
Three Techniques for Applying BPR

1. As used in computing, **reverse engineering** is the process of analyzing an existing system to identify its elements and their interrelationships, as well as to create documentation in a higher level of abstraction than currently exists.

2. **Restructuring** is the transformation of a system into another form without changing its functionality.

3. **Reengineering** is the complete redesign of a system with the objective of changing its functionality.
 - The proper mix depends on the current state of the system in terms of its functional and technical quality. Figure 7.10 is a diagram that shows these two influences.

![Figure 7.10 BPR Component Selection Is Based on Both Functional and Technical Quality](http://www.deden08m.wordpress.com)

http://www.deden08m.wordpress.com
PUTTING THE TRADITIONAL SDLC, PROTOTYPING, RAD, PHASED DEVELOPMENT, AND BPR IN PERSPECTIVE

• The traditional SDLC, prototyping, RAD, and BPR are methodologies that are recommended ways of developing an information system
• Currently, firms are revamping many systems that were implemented with computer technology that is now obsolete
• The name BPR is used for this. Prototyping, RAD, and phased development can be utilized in a BPR project to meet users’ needs in a responsive way

http://www.decen08m.wordpress.com

Process Modeling

• As developers perform analysis and design, they model the system data, processes, and objects
• A data flow diagram (DFD) is a graphic representation of a system that uses four symbol shapes representing: (1) environmental elements with which the system interfaces, (2) processes, (3) data flows, and (4) storage of data – to illustrate how data flows through interconnected processes
• Figure 7.11 illustrates a DFD system that a firm might use to compute commissions for its sales representatives
• Figure 7.12 is a context diagram of the sales commission system
• Figure 7.13 shows a Figure 4 diagram

http://www.decen08m.wordpress.com
Figure 7.11 A Data Flow Diagram of a Sales Commission System

Figure 7.12 A Context Diagram of a Sales Commission System
Use Cases

- A **use case** is a narrative description in an outline form of the dialog that occurs between a primary (usually a computer program) and a secondary system (a person interacting with the computer program).

There are two use case formats:

- A continuous narrative with each action numbered sequentially; and
- The other is called the **ping pong format** because it consists of two narratives and the numbering indicates how the tasks alternate between the primary and secondary systems (Figure 7.14).

- A set of guidelines for preparing a use case in the ping pong format is shown in Figure 7.15.
Figure 7.14 A Use Case

<table>
<thead>
<tr>
<th>Data Entry Operator</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Operator logs on with a password</td>
<td>2.0 System verifies operator and prompts operator to enter additional information</td>
</tr>
<tr>
<td>1.1-A Go to 7.0-A</td>
<td>2.0-A System does not verify operator and prompts to reenter</td>
</tr>
<tr>
<td>3.0 Operator enters customer number, item number, and item quantity</td>
<td>2.1-A Go to 1.0</td>
</tr>
<tr>
<td>3.0-A Return to main menu</td>
<td>4.0 System verifies customer number and item number</td>
</tr>
<tr>
<td>3.1-A Go to 7.0-A</td>
<td>4.0-A System does not verify customer number and item number</td>
</tr>
<tr>
<td>5.0 Go to 3.0</td>
<td>4.1-A System displays an error message and prompts operator to reenter</td>
</tr>
<tr>
<td>6.0-A Return to main menu</td>
<td>4.2-A Go to 3.0</td>
</tr>
<tr>
<td>6.0-A Log off</td>
<td>5.0 System saves order data</td>
</tr>
<tr>
<td>7.0 System logs employee off</td>
<td>7.0-A System displays main menu</td>
</tr>
</tbody>
</table>

Figure 7.15 Use Case Guidelines

1. Begin numbering with 1.0 on the left-hand side to represent the first user action.
 Example: 1.0 Operator logs on with a password
2. The first entry in the right-hand side should be 2.0, for the first system action.
3. Use decimal numbers to indicate steps taken in a sequence that are all part of a particular action.
 Otherwise, use ascending whole numbers (3.4.5, etc.).
 Example: 2.0 System verifies user
 2.1 System prompts user to enter additional information
4. Append an alphabetical letter to a sequence number for an alternate event.
 Example: 2.0-A System does not verify user
 2.1-A System prompts user to reenter password
5. When there are mutually exclusive alternate events, use multiple alphabetical letters.
6. For subsidiary actions, use a whole number for the basic action, followed by decimal numbers
 for the subsidiary actions.
 Example: 3.0 User creates report
 3.1 User specifies starting and ending dates
 3.2 User specifies report type
7. For optional actions, use a whole number for the basic action, followed by decimal numbers and
 alphabetical letters for the optional actions.
 Example: 3.2 User specifies report type
 3.2-A User specifies summary tabular report
 3.2-A User specifies detailed tabular report
 3.2-A User specifies graphical report
8. At the end of the process, the user should choose to repeat the process or log off.
 Example: 10.0 User returns to the main menu
 10.0-A User logs off
9. When the user logs off, the system should respond by logging the user off.
 Example: 11.0-A System logs user off
PROJECT MANAGEMENT

• Today, it is possible for life cycle management to span several organizational levels and involve managers outside of IT
• Figure 7.16 shows the hierarchical nature of project management
• In this example, there are five development projects going at the same time, all managed by the MIS steering committee
The MIS Steering Committee

- The MIS Steering Committee performs three main functions:
 - It establishes policies that ensure computer support for achieving the strategic objectives of the firm
 - It provides fiscal control by serving as the approval authority for all requests for computer-related funds
 - It resolves conflicts that arise concerning priorities for computer use

Project Leadership

- A project team includes all of the persons who participate in the development of an information system
- A team might have as many as a dozen members, consisting of some combination of users, information specialists, and may include an internal auditor
- A team or project leader, who provides direction throughout the life of the project, directs the team activity
The Project Management Mechanism

- The basis for project management is the project plan
- A popular format for a detailed plan is a Gantt chart, which identifies the tasks, who will perform them, and when they will be performed
- A **Gantt chart** is a horizontal bar chart that includes a bar for each task to be performed arranged in a time sequence
- Figure 7.17 is the first part of a Gantt chart, prepared using a Microsoft Excel spreadsheet
- A complement to the Gantt chart is the **network diagram**. Figure 7.18 is a high-level network diagram that identifies the phases of a project
Figure 7.18 A Network Diagram

http://www.dedent08m.wordpress.com

END OF CHAPTER 7